
Stem Cells, Genomics, Aging, Muscle

Research in the Allen Lab is broadly focused on understanding the mechanisms of growth factor and morphogen signaling in development and disease. Specifically, we study the regulation of Hedgehog signaling during embryonic and postnatal development, as well as adult tissue homeostasis, repair and regeneration. Our research employs a wide range of approaches, including mouse genetics, chicken in ovo electroporations, biochemistry, and cell biology. The long-term goal of this work is to apply insights gained from the study of HH signaling in normal contexts to the treatment of a broad...

Our lab uses optical and electrophysiological techniques to study how hormone trafficking, signaling, and release are regulated in neurosecretory cells. We investigate these processes as they relate to stress and stress transduction at the sympatho-adrenal synapse.

Transcriptional regulation; genetic and molecular mechanisms of Mendelian disease

Diabetic Retinopathy and Stroke

Our lab uses cellular and mouse models to study protein folding and misfolding in pancreatic beta cells (proinsulin) and thyroid epithelial cells (thyroglobulin), in order to discover new treatments for conformational diseases that affect these cells of the endocrine system. Our lab has described the cellular and molecular basis for the human disease known as Mutant INS gene-induced Diabetes of Youth, caused in most cases by expression of misfolded mutant proinsulin.

The effects of sensory experience and sleep on neural circuits, mechanisms underlying nervous system plasticity and memory formation.

Protein folding, neurodegeneration